В данном случае необходимо использовать обратную теорему Пифагора. Которая гласит, что, если в треугольнике со сторонами a, b и c выполняется равенство c2 = a 2 + b 2 , то этот треугольник прямоугольный, причем прямой угол противолежит стороне c.
Так как сумма квадратов сторон треугольника МРК - MP и KP - равна квадрату большей стороны - MK:
9^2+12^2=15^2,значит треугольник-прямоугольный,то есть его площадь равна половине произведения катетов MPи KP:
S=9*12/2=54.
Если в треугольнике провести высоту PH, например, то она будет являться высотой и для треугольника МРК, и для треугольника КРТ. Таким образом, получаем, что:
Sкрт=1/2 * РН*КТ
Sмрк=1/2 * РН*МК
Данные площади относятся, как КТ/МК, то есть, как 10/15= 2/3 -> площадь треугольника КРТ равна 2*Sмрк /3 = 2* 54/3=36
Получается, что площадь второго треугольника - треугольника МРТ - равна 1/3 площади основного треугольника, то есть 18.
ответ: 18 и 36
Тогда СО⊥BD, CO - проекция С₁О на плоскость (АВС) ⇒ С₁О⊥BD по теореме о трех перпендикулярах.
Аналогично, А₁О⊥BD.
∠С₁ОА₁ - искомый. Обозначим его α.
ΔА₁BD = ΔС₁BD по трем сторонам (их стороны - диагонали равных квадратов)
Треугольники равносторонние со стороной √2.
А₁О = С₁О = √6/2 - как высота равностороннего треугольника.
ΔС₁ОА₁:
С₁А₁² = А₁О² + С₁О² - 2А₁О· С₁О·cosα
2 = 6/4 + 6/4 - 2 · √6/2 · √6/2 · cosα
2 = 3 - 3cosα
cosα = 1/3
α = arccos (1/3)