Пусть плоскости α и β параллельны, прямая а перпендикулярна плоскости α. Докажем, что эта прямая перпендикулярна и плоскости β.
В плоскости α проведем две пересекающиеся прямые b и с.
Так как прямая а перпендикулярна плоскости α, то она перпендикулярна каждой из этих прямых.
В плоскости β проведем прямые d║b и е║с.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Значит, а ⊥ d и а ⊥ е.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости, ⇒
а ⊥ β.
1 сторона х
2 сторона х+60
3 сторона 150х+х+60+150=450
2х=450-210
х=240:2
х=120
120 +60 =180 другая сторона