Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.
Применим теорему Пифагора
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
ответ: Площадь равнобедренного треугольника составляет 48 см2
Объяснение:
Напротив угла в 30° лежит катет в два раза меньше гипотенузы: 2BC = AB
Пусть BC = x, тогда AB = 2x
Составим уравнение по теореме Пифагора:
(2x)² = x² + 10²
4x² - x² = 100
3x² = 100
x² = 100/3
x = 10/√3