М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hekita14
hekita14
06.09.2022 17:55 •  Геометрия

Гіпотенуза прямокутного трикутника 25 см а висота опущена на неї 12 см знайти суму катетів

👇
Ответ:
sazonov30021
sazonov30021
06.09.2022
Дано:
Δ АСВ ; ∠С= 90°
АВ= 25 см
СН = 12 см  - высота
Найти :   (АС +СВ ) - ?
Решение №1 (по теореме Пифагора):
СН⊥АВ  ⇒  ∠СНА= ∠СНВ = 90°
ΔАНС : 
АС² = АН² +СН²
АН = х см
АС² = х² + 12²   
ΔСНВ :
СВ²= НВ² +СН²
НВ = (25 -х) см
СВ² = (25-х)²  + 12²
ΔАСВ :
АВ² = АС² + СВ²
25² = х² + 12²  + (25-х)² + 12²
625 = х² + 144 + 25² - 2*25*х  + х²  + 144
625 = 2х²  -50х  + 288  + 625 
2х²  - 50х  + 288  + 625  - 625  = 0
2(х² - 25х + 144)  = 0       |÷2
x²  - 25x + 144 = 0
D = (-25)²  - 4*1*144 = 625 - 576=49=7²
D>0  два корня уравнения
х₁ =  (25-7)/(2*1) = 18/2 = 9 (см)   
х₂ = (25+7)/ (2*1) = 32/2 = 16 (см) 
АН = 9 см  ; НВ = 16 см   (или наоборот)
АС² = 9²  + 12²    ⇒ АС = √(81 + 144)  = √225 = 15 (см) один катет
СВ² = 16²  + 12²   ⇒ СВ= √(256+144) = √400 = 20 (см) второй катет
АС +СВ = 15 + 20 =  35 (см) сумма катетов

Решение 2.
Высота из вершины прямого угла есть среднее пропорциональное между отрезками, на которую делится гипотенуза этой высотой:
СН = √(АН*НВ)
АН= х  см
НВ = (25-х) см
12 = √ (х(25-х) )
(12²) = ( √(х(25-х) ) ² 
144 = х(25-х)
144 = 25х  - х²
144 + х²  - 25х = 0
х² - 25х + 144 = 0
x²  - 9x   - 16x + 144 = 0
x(x-9)  - 16(x-9) = 0
(х-9) (x-16)=0
произведение = 0 , если один из множителей = 0
x - 9 = 0   ⇒  x₁ = 9   ⇒ АН = 9  см  
x - 16 = 0 ⇒  x₂  = 16 ⇒ НВ  = 16  см
По теореме Пифагора:
ΔАНС :  АС =√(  9² + 12² ) = √225 = 15 (см)
ΔВНС :  СВ= √(16² +12²) = √400 = 20 (см)
АС +СВ =  15 + 20 = 35 (см)

Решение 3.
Формула длины высоты через стороны:
Н= ab/c , где а,b  - катеты ; с - гипотенуза
c= 25  см ; Н = 12 см , подставляем в формулу :
12 = ab/25
ab= 25*12
ab=300      ⇒ b= 300/a
По теореме Пифагора:
a²  + (300/a)²  = 25²
(a⁴  + 300²) / a²  = 25²
a⁴  - 625a²  + 300² =0
a⁴  -  225a²  -  400a²  + 90000 = 0
a²(a²-225)  - 400(a² - 225) = 0
(a² - 225)(a²  - 400) = 0
(a²  - 15²)(a²  - 20²) = 0 
(a-15)(a+15)(a-20)(a+20) = 0
a₁ = 15 (см) один катет
a₂ =  - 15   не удовл. условию
а₃ = 20 (см) другой катет
а₄ =  - 20   не удовл. условию
а₁ + а₃  =  15 + 20 = 35 (см) сумма катетов

ответ:  35 см  сумма катетов .
Гіпотенуза прямокутного трикутника 25 см а висота опущена на неї 12 см знайти суму катетів
4,4(8 оценок)
Открыть все ответы
Ответ:
mialia9922
mialia9922
06.09.2022
Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно этой диагонали. [1]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно плоскости большего основания. [2]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно к плоскости большего основания. Определить объем каждой части, если в усеченной пирамиде высота равна 4 см, а стороны оснований 2 см и 5 см Сделать чертеж. [3]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [4]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к ней. [5]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [6]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [7]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [8]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [9]Из правильной четырехугольной усеченной пирамиды вырезана часть ее в виде двух пирамид, имеющих общую вершину в точке пересечения ее диагоналей, а основаниями - ее основания. [10]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [11]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения, перпендикулярного к основанию. [12]Высота правильной четырехугольной усеченной пирамиды равна Я, боковое ребро и диагональ пирамиды наклонены к плоскости ее основания под углами и и р Найти ее боковую поверхность. [13]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований равны 10 и 2 см. Найдите боковое ребро пирамиды. [14]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований 10 см и 2 см. Найти боковое ребро пирамиды. [15]
4,5(34 оценок)
Ответ:
vigura2
vigura2
06.09.2022

ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е.  равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда  внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,

(180°-120°)/2=30°,  как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый  ∠ DАВ =90°-30°=60°

ответ 60 °

Объяснение:

4,8(2 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ