М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Qwer3313qw
Qwer3313qw
23.03.2020 22:44 •  Геометрия

Восновании пирамиды лежит прямоугольный треугольник с катетом а и противолежащим острым углом f. все боковые рёбра наклонены к плоскости основания под углом ß. найти объём пирамиды.

👇
Ответ:
Zloo6024600
Zloo6024600
23.03.2020
Если все боковые ребра наклонены под одним углом к основанию пирамиды, все боковые ребра равны, а вершина пирамиды проецируется в центр описанной около основания окружности. Центр окружности, описанной около прямоугольного треугольника лежит на середине гипотенузы, т.е. основанием высоты (SO) пирамиды явялется середина гипотенузы (AC) основания пирамиды. 
В прямоугольном треугольнике ABC:
Катет AB = a
∠ABC = 90°
∠ACB = f
Тангенсом ∠ACB явялется отношение противолежащего ему катета AB к прилежащему катету BC.

tg(ACB) = AB / BC
BC = AB / tg(ACB)
BC = a / tg(f)

Площадь основания пирамиды SABC:
Sосн = 1/2 * AB * AC
Sосн = 1/2 * a * a / tg(f) = a² / (2tg(f))

Синусом ∠ACB является отношение противолежащего ему катета AB к гипотенузе AC
sin(ACB) = AB / AC
AC = AB / sin(ACB)
AC = a / sin(f)

CO = AC / 2                    a
CO = 1/2 * a/sin(f) = --------------
                                      2sin(f)

В прямоугольном треугольнике SOC:
Катет CO = a / (2sin(f))
∠SCO = β
SO = H пирамиды
Тангенсом ∠SCO является отношение противолежащего ему катета SO к прилежащему катету CO

tg(SCO) = SO / CO
SO = CO * tg(SCO)
SO = CO * tg β
                                            a * tg β
SO = a / (2sin(f)) * tg β = -------------------
                                            2sin(f)
Объем пирамиды
V = 1/3 * Sосн * H

          1               a²                 a * tg β           a³ * tg β
V = --------- * ---------------- * --------------- = ----------------------------
          3               2tg(f)            2sin(f)           12 * tg(f) * sin(f)

Восновании пирамиды лежит прямоугольный треугольник с катетом а и противолежащим острым углом f. все
4,7(64 оценок)
Открыть все ответы
Ответ:
kryganavika2006
kryganavika2006
23.03.2020
Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой. 
h - высота пирамиды, a - сторона основания.
Апофема  - это опущенный перпендикуляр из вершины пирамиды на сторону основания.
Т.к.основание квадрат, то диаметр d=a√2 (можно по т.Пифагора проверить), тогда а=d/√2=6/√2=3√2
Апофема L , высота пирамиды h и расстояние от основания высоты до основания апофемы (1/2стороны основания) образуют прямоугольный треугольник. Из него найдем высоту h=√L²-(a/2)²=√4²-(3√2/2)²=√16-9/2=√23/2
Объем пирамиды V=1/3*а²*h=1/3*(3√2)²*√23/2=3√23
Sбок=1/2PL=1/2*4a*L=1/2*4*3√2*4=24√2
4,6(84 оценок)
Ответ:
nadezhdalipchan
nadezhdalipchan
23.03.2020
Итак, призма прямая и в основании - прямоугольный треугольник. Пусть стороны основания a, b и c, где с - гипотенуза, a и b - катеты. Тогда по Пифагору имеем:
a²+b²=c² или b²=c²-a². Рассмотрим грани пирамиды. Это прямоугольники с диагоналями 4 см 7 см и 8 см. Причем диагональ 8 см - это диагональ прямоугольника на гипотенузе основания (она - большая). Тогда по Пифагору:
h² = 8² - c² (1); h² = 4² - b² (2); h² = 7² - a² (3), где h - высота призмы.
Подставим b²=c²-a² в (2): h² = 4² - (c²-a²). Приравняем (1) и (2):
64 - c² = 16 - c²+a². Отсюда a² = 48, тогда h² = 7² - a² = 1.  h = 1cм
ответ: высота призмы равна 1см.

P.S. Тот же ответ получится, если в (3) подставить a²=c²-b² и приравнять (1) и (3).
4,4(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ