Нехай є трикутна піраміда, сторони основи якої см,
см,
см. Якщо всі бічні грані піраміди нахилені до основи під кутом
, то висота
піраміди лежить у центрі
вписаного кола, де
,
та
— радіуси цього кола.
Треба знайти площу бічної поверхні піраміди. Для того щоб її знайти, треба визначити площу кожної бічної грані.
Знайдемо площу основи за формулою Герона:
см — півпериметр основи.
см² — площа основи.
Знайдемо радіус вписаного кола:
см.
Отже, см.
, де
як радіуси вписаного кола, а
та
— дотичні. Тут
— проекції відповідно
на площину
. Отже,
за теоремою про три перпендикуляри. Тому
— лінійні кути двогранного кута відповідно при ребрах
.
Розглянемо прямокутний трикутник
см
(за першою ознакою рівності трикутників
).
Розглянемо трикутник
см²
Розглянемо трикутник
см²
Розглянемо трикутник
см²
Отже, площею бічної поверхні заданої піраміди буде см².
Відповідь: 432 см².
а) 56 кв. см;
б) ... .
Объяснение:
а) Дано:
АВСD - р/б трапеция;
АВ=CD=5 см (боковые стороны);
AD и BC - основания ABCD;
АВ=17 см;
ВС=11 см;
BM и CN - высоты АВСD.
Найти: S (ABCD).
1) Рассмотрим прямоугольник (т. к. ВМ и CN - высоты АВСD) МВСN:
ВC=MN=11 см (как противоположные стороны параллелограмма) => АМ=DN=(AD-MN):2= (17 см - 11 см) : 2 = 6 см : 2 = 3 см.2) Рассмотрим прямоугольный треугольник (т. к. ВМ - высота) АВМ:
По теореме Пифагора: высота ВМ^2=АВ^2-АМ^2=5^2-3^2=25-9=16 => ВМ = корень из 16 = 4 см.3) Теперь можем найти площадь трапеции ABCD:
S (ABCD)= 1/2•(AD+BC)•BM= 1/2 • (17 см + 11 см) • 4 см = 1/2 • 28 см • 4 см = 14 см • 4 см = 56 кв. см.ответ: 56 кв. см.
б) Дано:
АВСD - р/б трапеция;
АВ=CD (боковые стороны);
AD и BC - основания ABCD;
АВ=8 см;
ВС=2 см;
Угол АDC=60°;
BM и CN - высоты АВСD.
Найти: S (ABCD).
1) ... .
Проведём осевое сечение и определим радиус r основания:
r = L*sin 60° = 5*(√3/2) = 5√3/2 см.
Радиус R шара, описанного около конуса в осевом сечении равен радиусу R описанной около равнобедренного треугольника окружности.
Центр её находится на пересечении срединных перпендикуляров.
R = (5/2)/cos 60° = 5*2)/(2*1) =5 см.
Объём шара равен:
V = (4/3) π R³ = (4/3) π · 5³ = (500/3)π ≈ 523,5988 см³.