Снекоторыми вопросами по . 1. сформулируйте основное свойство прямой. 2. для чего используют определения? 3. сформулируйте теорему о двух пересекающихся прямых.
№1 1.У прямой линии нет ни начала ни конца, то есть она бесконечна.
2.Через две произвольные точки можно провести прямую линию, и притом только одну.
3. Через произвольную точку можно провести не ограниченное количество прямых на плоскости.
4.Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или они параллельны.
Для обозначения прямой линии используют или одну малую букву латинского алфавита, или две большие буквы, написанные в двух различных местах этой прямой. №2 Чтобы знать, что означает тот или иной предмет №3 На это ответ не знаю, потому что не уточнили, какие именно прямые, их пересекает прямая или они друг друга.
В квадрате диагонали перпендикулярны друг другу. Если есть точка М(х₁ у₁) и прямая Ах + Ву + С = 0, то уравнение перпендикулярной прямой: А(у - у₁) - В(х - х₁) = 0. Подставляем известные данные: точка А(5;-4) и прямая - диагональ ВД: х - 7у - 8 = 0. Уравнение диагонали АС: 1*(у - (-4)) - (-7)*(х - 5) = 0. у + 4 + 7х - 35 = 0, АС: 7х + у - 31 = 0. Эта же прямая в виду уравнения с коэффициентом: у = -7х + 31.
В уравнении типа у = кх + в коэффициент к - это тангенс угла наклона прямой к оси "х". Стороны квадрата проходят под углом +45° и -45° к диагонали. Используем формулу тангенса суммы (разности) углов: . Используя к = -7 для АС, находим "к" для сторон АВ и АД:
Теперь переходим к уравнениям сторон. У параллельных прямых коэффициент к одинаков. Найдём координаты точки С, симметричной точка А относительно прямой ВД. Алгоритм решения : 1) Находим прямую (диагональ АС), которая перпендикулярна прямой ВД. 2) Находим точку К пересечения прямых - это будет центр квадрата. 3) Точка К является серединой отрезка АС. Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим точку С.
1) Уравнение АС найдено. 2) ВД: х - 7у - 8 = 0 -7х + 49у + 56 = 0 АС: 7х + у - 31 = 0 7х + у - 31 = 0 -------------------------- 50у + 25 = 0 у = -25 / 50 = -1/2. х = 7у + 8 = 7*(-1/2) + 8 = -3,5 + 8 = 4,5. Получили координаты точки К(4,5; -0,5).
Первая задача: Так как плоскость задается точкой и прямой, а все три пересекающиеся между собой прямые пересекают четвертую, то и точки А, В и С принадлежат одной плоскости, в которой и лежат те три прямые. Вторая задача: Прямая ВС лежит в плоскости (АВС), так как 2 её точки В и С лежат в плоскости (АВС). Прямая АМ пересекает плоскость (АВС) в точке А, не лежащей на ВС, значит АМ и ВС скрещивающиеся прямые. Третья задача: PK средняя линия треугольника АВС, поэтому равна 1/2 ВС=8:2=4Доказательство. МН средняя линия треугольника DBC (по условию), значит МН || BC и с плоскостью МНК. не имеет общих точек, поэтому РК тоже не может иметь с ВС общих точек, но РК и ВС лежат в одной плоскости треугольника АВС, значит РК и ВС параллельны. Так, как к середина АС, то и Р должна быть серединой АВ.
Этого хватит, ты мало выставил, так бы все решил. Удачи!!
1.У прямой линии нет ни начала ни конца, то есть она бесконечна.
2.Через две произвольные точки можно провести прямую линию, и притом только одну.
3. Через произвольную точку можно провести не ограниченное количество прямых на плоскости.
4.Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или они параллельны.
Для обозначения прямой линии используют или одну малую букву латинского алфавита, или две большие буквы, написанные в двух различных местах этой прямой.
№2
Чтобы знать, что означает тот или иной предмет
№3
На это ответ не знаю, потому что не уточнили, какие именно прямые, их пересекает прямая или они друг друга.