В параллелограмме противоположные углы равны, а смежные (прилежащие к одной стороне) в сумме равны 180°. Значит углы параллелограмма равны <A=180°-127°=53°. <B=127°, <C=53°, <D=127°
X,y - основания трапеции a - боковая сторона h - высота, h=4/5a 2a+x+y=64- периметр трапеции Рассм. треугольник, образованный высотой трапеции h, боковой стороной a: основание треугольника - (y-x)/2, тк по условию задачи, y-x=18, то основание треугольника равно 9. по теореме пифагора, 81=a*a+h*h 81=a*a+16/25a*a, отсюда получаем, что а=15. h=4/5*15=12 Из уравнения 2a+x+y=64 и y-x=18, находим, что основания трапеции х и у равны 8 и 26 соотвественно. Площадь трапеции равна полусумме оснований на высоту, т.е. 0,5*12*(8+26)=204
Решается очень просто, просто нужно немножко подумать.Постараюсь объяснить! из точки В к основанию АД опускаешь высоту, получается высота ВК. из точки С опускаешь высоту к основанию АД, получается высота СМ. ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14 АК=МД=14/2=7 В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы. В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30 Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14
Значит углы параллелограмма равны
<A=180°-127°=53°. <B=127°, <C=53°, <D=127°