Впараллелограмме авсd угол ваd = 60 градусов. биссектриса ат угла ваd пересекает сторону вс в точке т. известно, что аd = 15 см, вт = 10 см. вычислите длины диагоналей параллелограмма.
Угол ABC равен 120, а угол BAT равен 30. Тогда угол BTA также равен 30, и AB=BT=10. Тогда стороны параллелограмма равны 15 и 10, а углы равны 60 и 120. Рассмотрим треугольник ABC. Диагональ AC найдем по теореме косинусов, AC^2=225+100+150, AC=sqrt(475)=5sqrt(19). Диагональ BD находится аналогично, BD"2=225+100-150=sqrt(175)=5sqrt(7).
М=середина ас, значит ее координаты найдем как среднее арифметическое координат точек а и с м(-1; -1; -1) ас=(8; 12; -8) bm=(-5; -3; 1) cos(ac; bm)=(ac*bm)/(/ac//bm/) в числителе - скалярное произведение, в знаменателе - модули, то есть длины векторов ac*bm=-40-36-8=-84 /ac/=√(64+144+64)=√272 /bm/=√(25+9+1)=√35 cos(ac; bm)=-84/(√272√35)=-84/(4√17√7√5)=-21/√595 ∠(ac; bm)=arccos(-21/√595) -искомый угол, значение нетабличное, по другому не запишешь ответ: arccos(-21/√595)
Трапеция АВСD равнобедренная, значит ее диагонали равны. АС=BD. Проведем прямую СР параллельно диагонали BD до пересечения с продолжением основания AD в точке Р. BCPD параллелограмм и DP=BC. Треугольник АСР прямоугольный и равнобедренный, так как катеты CP и АС перпендикулярны (АС перпендикулярна BD - дано, а CP параллельна BD по построению). Пусть катеты AC и CР равны X. Тогда гипотенуза AP=Х√2 (по Пифагору). CH - высота треугольника АСР, проведенная из вершины прямого угла и равна произведению катетов, деленному на гипотенузу (свойство). Итак, CH=AC*CP/AP. CH=14см (дано). Тогда 14=Х^2/(Х√2). Отсюда Х=14√2, а АР=14√2*√2=28см. Но АР=AD+BC. Тогда площадь трапеции равныS=(AD+BC)*CH/2 или S=28*14/2=196 см^2. ответ: S=196 см^2.
Угол ABC равен 120, а угол BAT равен 30. Тогда угол BTA также равен 30, и AB=BT=10. Тогда стороны параллелограмма равны 15 и 10, а углы равны 60 и 120. Рассмотрим треугольник ABC. Диагональ AC найдем по теореме косинусов, AC^2=225+100+150, AC=sqrt(475)=5sqrt(19). Диагональ BD находится аналогично, BD"2=225+100-150=sqrt(175)=5sqrt(7).