Т.к. биссектриса является высотой, треугольник ABC - равнобедренный, с основанием AC. Значит, AB=BC, а BK также является медианой, т.е. AK=CK. Периметр ABK P=AB+BK+AK; Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см
Задача 2 Т.к. AB=BC, AF=EC=AB/2=BC/2; Рассмотрим треугольники AFC и CEA Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA) Тогда углы EAC=FCA. Значит, угол BAE=BAC-EAC=BCF Углы FMA=EMC, как вертикальые Тогда углы AFM=180-FMA-FAM=MEC Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM) Тогда AM=MC => треугольник AMC - равнобедренный
Точка пересечения AD и BE обозначаем через O . Биссектриса BO одновременно и высота , значит ΔABD равнобедренный (BD =AB) : BD =BC/2 =AB⇒BC=2AB⇔ a =2c. CE/EA =BC/AB = 2; EA =x ; CE=2x ; AC =b=3x . Можно использовать формулы для вычисления медиан и биссектрис : a² + ( 2AD)²=2(c² +b²) (1) ; BE² =AB*BC - AE*EC (2) .
Пусть AD пересекает BE в точке F. ABD - равнобедренный (т.к. BF его биссектриса и высота), т.е. AB=BD=DC=a. На продолжении прямой BA за точку A возьмем точку S, так что AB=AS, т.е. SBC - равнобедренный треугольник и BS=BC=2a. AD - его средняя линия. Пусть BG - высота треугольника SBC. Пусть FE=x. Т.к. SC=2AD, то EG=2x, значит BF=FG=3x. Отсюда BE=BF+FE=3x+x=4x=92, т.е. x=23. Т.к. AF=92/2=46, то по т. Пифагора для треугольника AFE получим . По свойству биссектрисы BE получаем EC=2AE и, следовательно, . По т. Пифагора для треугольника ABF получим ..
Периметр ABK P=AB+BK+AK;
Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см
Задача 2
Т.к. AB=BC, AF=EC=AB/2=BC/2;
Рассмотрим треугольники AFC и CEA
Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)
Тогда углы EAC=FCA.
Значит, угол BAE=BAC-EAC=BCF
Углы FMA=EMC, как вертикальые
Тогда углы AFM=180-FMA-FAM=MEC
Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)
Тогда AM=MC => треугольник AMC - равнобедренный