Сначало сможем найти площадь большого квадрата, длиной которого является (a-f) + b + c. Ширина этого же квадрата равна f + l, следовательно S-1 = ((a-f)+b+c) * (f+l).
Находим площадь маленьго прямоугольник слева, его длина – l, ширина – f, следовательно S-2 = l * f
(2 – индекс, пишется как степень, только снизу)
При нахождении площади треугольника, зная только 2 стороны, легче будет найти площадь прямоугольник или квадрата (зависит от треугольника) и разделить на два:
S-3 = b * d : 2
Для нахождения площади всей фигуры мы просто сладиваем все площади и получаем:
Действуем по формуле:
S = S-1 + S-2 + S-3
S = (((a-f)+b+c)*(f+l))) + (l * f) + (b*d:2)
Дан ромб с острым углом α = 30° и радиусом вписанной окружности r = 3 см. Боковые грани пирамиды наклонены к плоскости основания под углом β = 60°.
В ромбе радиус вписанной окружности связан непосредственно со стороной через синус угла α. Сам радиус по определению представляет собой половину высоты ромба, которая равна стороне ромба, умноженной на синус угла α из образованного прямоугольного треугольника.
Высота в таком случае получается равна двум радиусам.
2r = a sinα.
Отсюда находим сторону а ромба и его периметр Р:
а = 2r/sinα = 2*3/0,5 = 12 см.
Р = 4а = 4*12 = 48 см.
Находим апофему А:
А = r/cos β = 3/cos 60° = 3/0,5 = 6 см.
Sбок = (1/2)РА = (1/2)*48*6 = 144 см².