9 м и 12 м
Объяснение:
Пусть х - это гипотенуза, тогда (х-3) и (х-6) - катеты.
Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов:
х² = (х-3)² + (х-6)²
х² = х² - 6х + 9 + х² - 12х + 36
х² = 2х² - 18х + 45
х² - 18х + 45 = 0
х₁,₂ = 9 ±√(81-45) = 9 ±√36 = 9±6
х₁ = 9 + 6 = 15
х₂ = 9 - 6 = 3
Из полученных значений условию задачи удовлетворяет только х = 15 м, т.к. длины катетов могут быть выражены только положительными числами.
Следовательно, катеты прямоугольного треугольника равны:
15 - 3 = 12 м и 15 - 6 = 9 м
ПРОВЕРКА:
12² + 9² = 144 + 81 = 225 - сумма квадратов катетов;
15² = 225 - квадрат гипотенузы;
225 = 225 - следовательно, задача решена верно.
ответ: катеты прямоугольного треугольника равны 9 м и 12 м.
ВОТ ПРИМЕР:
сделаем построение по условию
дано куб ABCDA1B1C1D1
все стороны равны - обозначим - а
точки K,L,M - середины соответствующих ребер AA1 , A1B1, A1D1 , значит делят ребра пополам на отрезки а/2
все углы в кубе прямые =90 град , значит ∆A1KM ∆A1ML ∆A1LK - прямоугольные
по теореме Пифагора
LM^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; LM = a/√2
KM^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; KM = a/√2
LK^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; LK = a/√2
получается , что все стороны в ∆MLK равны LM=KM=LK=a/√2
значит ∆MLK - равносторонний
в равностороннем треугольнике все углы равны 60 град
ОТВЕТ угол MLK =60 град
Ось X- AF
Ось Y - AC
Ось Z - AA1
Вектора
АВ1(-0.5;;√3/2;1) длина √2
ВF1(1.5; -√3/2;1) длина 2
Косинус угла между ними
|-3/4-3/4+1 | / √2 / 2= √2/8