А) Вертикальные углы равны. Такое же свойства имеют соответсвенные и на крест лежащие углы. б) Смежные углы в сумме дают 180°. Такое же свойство имеют односторонние углы.
Центр описанной окружности располагается на пересечении серединных перпендикуляров треугольника. Так как треугольник равнобедренный, то биссектрисаи серединный перпендикуляр, проведенные к основанию, совпадают. Следовательно, BO - биссектриса угла ABC. Тогда: ∠CBO=∠ABC/2=170°/2=85° Треугольник OBC - равнобедренный, так как OB и OC - радиусы окружности и следовательно равны. По свойству равнобедренного треугольника: ∠CBO=∠BCO=85° По теореме о сумме углов треугольника: 180°=∠CBO+∠BCO+∠BOC 180°=85°+85°+∠BOC 180°-85°-85°=10° ∠BOC=10°
Расстояние от вершин треугольника до точек касания вписанной окружности равны по теореме о касательных.Обозначим расстояние от вершины угла при основании до точки касания окружности боковой стороны 8х,от этой точки до вершины угла напротив основания 3х( ПО УСЛОВИЮ).Получаем боковая сторона= 11х.Тогда по т-ме о касательной , расстояние от вершины при основании до точки касания окружности с основанием тоже = 8х.Все по той же теореме вторая боковая сторона делится точкой касания на отрезки 8х и 3х, считая от основания, а само основание на отрезки 8х и 8х.Тогда Р= 11х+11х+8х+8х=38х=76 х=2.Значит боковая сторона 11*2=22 ,основание 16*2=32
б) Смежные углы в сумме дают 180°. Такое же свойство имеют односторонние углы.