PΔ = (2+2)+(3+3)+(9+9) = 28
Объяснение:
Тут же просто. Даже круги рисовать не нужно, но я нарисовал для наглядности.
Если вершины треугольника находятся в центрах касающихся кругов, значит его стороны образованы радиусами этих кругов.
То есть, 1 сторона Δ = R₁+R₂ = 2+3 = 5;
2 сторона Δ = R₂+R₃ = 3+9 = 12;
3 сторона Δ = R₁+R₃ = 2+9 = 11
Каждый круг строит треугольник двумя своими радиусами.
Поэтому: PΔ = (R₁+R₂) + (R₂+R₃) + (R₁+R₃)
PΔ = (2+3) + (3+9) + (2+9) = 28
или: PΔ = (2+2)+(3+3)+(9+9) = 28
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Объяснение:
Задачи на знание теоремы синусов