Рассмотрим внешние получившиеся треугольники. Они будут все равны между собой по двум сторонам и углу между ними
Угол между сторонами - это угол начального правильного пятиугольникам. а раз начальный пятиугольник правильный, то все его углы равны. Каждая сторона, прилегающая к этому углу равна половине длины стороны начального правильного пятиугольника. Значит, все эти стороны тоже равны между собой. Получается, что все внешние треугольники равны. У равных треугольников равны соответствующие элементы. в данном случае нас интересуют их третьи стороны - те, что образовали новый пятиугольник. раз они равны, то пятиугольник прявильный, чтд
Рассмотрим внешние получившиеся треугольники. Они будут все равны между собой по двум сторонам и углу между ними
Угол между сторонами - это угол начального правильного пятиугольникам. а раз начальный пятиугольник правильный, то все его углы равны. Каждая сторона, прилегающая к этому углу равна половине длины стороны начального правильного пятиугольника. Значит, все эти стороны тоже равны между собой. Получается, что все внешние треугольники равны. У равных треугольников равны соответствующие элементы. в данном случае нас интересуют их третьи стороны - те, что образовали новый пятиугольник. раз они равны, то пятиугольник прявильный, чтд
Чертеж то несложный, просто пятиугольник и внутри еще один
АН1 + DН2 = 15-7 = 8
Треугольник АВН1 с углом при основании 60°, а треугольник DСН2 с углом 30°.
tg 60° = BH1/АН1 = 1/√3
AH1 = BH1/√3
tg 30° = CH2/DH2 = √3/3
DH2 = 3*CH2/√3
AH1 / DH2 = 3 |=> AH1 = 3*DH2
DH2 + 3*DH2 = 8
DH2 = 2
AH1 = 6
=> BH1 = tg 60° * AH1 = 6/√3=2√3 .
Рассмотрим прямоугольный треугольник DBH1. DB - диагональ.
DB² =DH1² + BH1² = (7+2)² +(2√3)²=81+12 = 93
DB = √93
аналогично рассмотрим прямоугольный треугольник ACH2
AC² = (7+6)²+(2√3)² = 169 +12 = 181
AC = √181