Ввыпуклом четырехугольнике abcd точки m, n, t, k – середины сторон ab, bc, cd и ad соответственно. известно, что nk - биссектриса угла mnt. докажите, что mn = nt = tk = km. заранее !
MN II AB как средняя линия в треугольнике ABC; ML II CD как средняя линия BCD; KL II AB как средняя линия ABD; KN II CD как средняя линия ACD; Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм. По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны. Так же по условию KN = LN, то есть треугольник KNL равносторонний. Следовательно ∠NKL = 60°; Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
Получается равносторонний треугольник со стороной АB. Одна вершина треугольника лежит в центре окружности, остальные две лежат на окружности. Хорда из точки А строится элементарно по определению хорды. Задача решается при циркуля и угольника.
Строим так. Берем циркулем величину АВ. Рисуем окружность. Иголка циркуля стоит в центре О, грифель на некоторой точке окружности, которую теперь будем считать точкой А. Вынимаем иголку из центра (аккуратно, чтобы не сбросить взятую величину), ставим ее в точку А. Поворачиваем циркуль до пересечения грифеля с окружностью. Это будет точка В. Соединяем центр и точки А, В, получаем равносторонний треугольник. Хорда из точки А строится при угольника.
Если положение отрезка фиксировано в пространстве, то см. ответ ниже. Центр окружности будет лежать на серединном перпендикуляре.
Получается равносторонний треугольник со стороной АB. Одна вершина треугольника лежит в центре окружности, остальные две лежат на окружности. Хорда из точки А строится элементарно по определению хорды. Задача решается при циркуля и угольника.
Строим так. Берем циркулем величину АВ. Рисуем окружность. Иголка циркуля стоит в центре О, грифель на некоторой точке окружности, которую теперь будем считать точкой А. Вынимаем иголку из центра (аккуратно, чтобы не сбросить взятую величину), ставим ее в точку А. Поворачиваем циркуль до пересечения грифеля с окружностью. Это будет точка В. Соединяем центр и точки А, В, получаем равносторонний треугольник. Хорда из точки А строится при угольника.
Если положение отрезка фиксировано в пространстве, то см. ответ ниже. Центр окружности будет лежать на серединном перпендикуляре.
ML II CD как средняя линия BCD;
KL II AB как средняя линия ABD;
KN II CD как средняя линия ACD;
Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм.
По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны.
Так же по условию KN = LN, то есть треугольник KNL равносторонний.
Следовательно ∠NKL = 60°;
Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.