Решение: основания трапеции не могут быть одинаковой длины, следовательно даны длины меньшего основания и боковых сторон: АВ = ВС = СЕ = 6 см, значит трапеция равнобокая, ∠ВСЕ = ∠АВС = 120°
Опустим высоты ВМ и СК. Высоты трапеции перпендикулярны основаниям ⇒ ВСКМ - прямоугольник, отсюда: МК = ВС = 6 см
Рассмотрим треугольники АВМ и ЕСК: ∠АВМ = ∠ЕСК = 120 - 90 = 30° В прямоугольном треугольнике, катет, лежащий против угла 30° равен половине гипотенузы, отсюда: АМ = АВ/2 = 6/2 = 3 см КЕ = СЕ/2 = 6/2 = 3 см
АЕ = АМ + МК + КЕ = 3 + 6 + 3 = 12 см
Средняя линия трапеции равна полусумме оснований, отсюда: РО = (ВС + АЕ)/2 = (6 + 12)/2 = 9 см
Сечение куба проходит по двум параллельным ребрам оснований и двум диагоналям параллельных граней. Т.е. это прямоугольник АВС₁D₁. Так как грани куба - квадраты, их диагонали равны длине стороны квадрата, умноженной на √2. Обозначив длину ребра куба а, получим: d=ВС₁=АD₁=a√2 Тогда S☐= а*а√2=25√2 а=√25=5 см Диагональ куба находят по формуле D=а√3 Отсюда D=5√3. ----------------- Так как диагональ куба лежит в плоскости его диагонального сечения, она совпадает с диагональю сечения, которое дано в условии. Поэтому можно найти диагональ куба и как диагональ этого сечения по т. Пифагора с тем же результатом.
Сечение куба проходит по двум параллельным ребрам оснований и двум диагоналям параллельных граней. Т.е. это прямоугольник АВС₁D₁. Так как грани куба - квадраты, их диагонали равны длине стороны квадрата, умноженной на √2. Обозначив длину ребра куба а, получим: d=ВС₁=АD₁=a√2 Тогда S☐= а*а√2=25√2 а=√25=5 см Диагональ куба находят по формуле D=а√3 Отсюда D=5√3. ----------------- Так как диагональ куба лежит в плоскости его диагонального сечения, она совпадает с диагональю сечения, которое дано в условии. Поэтому можно найти диагональ куба и как диагональ этого сечения по т. Пифагора с тем же результатом.
АЕ || ВС
∠АВС = 120°
Решение:
основания трапеции не могут быть одинаковой длины, следовательно даны длины меньшего основания и боковых сторон:
АВ = ВС = СЕ = 6 см, значит трапеция равнобокая,
∠ВСЕ = ∠АВС = 120°
Опустим высоты ВМ и СК.
Высоты трапеции перпендикулярны основаниям ⇒ ВСКМ - прямоугольник, отсюда: МК = ВС = 6 см
Рассмотрим треугольники АВМ и ЕСК:
∠АВМ = ∠ЕСК = 120 - 90 = 30°
В прямоугольном треугольнике, катет, лежащий против угла 30° равен половине гипотенузы, отсюда:
АМ = АВ/2 = 6/2 = 3 см
КЕ = СЕ/2 = 6/2 = 3 см
АЕ = АМ + МК + КЕ = 3 + 6 + 3 = 12 см
Средняя линия трапеции равна полусумме оснований, отсюда:
РО = (ВС + АЕ)/2 = (6 + 12)/2 = 9 см
ответ: 9 см.