Объяснение:
прямоугольник ABCD
CD =
AD = 0,7
Найти:
BD — ?
https://tex.z-dn.net/?f=c%5E2%20%3D%20a%5E2%20%2B%20b%5E2%20%5C%5C%5C%5Cc%5E2%20%3D%20(%5Csqrt%7B0%2C95%7D)%5E2%20%2B%200%2C7%5E2%5C%5Cc%5E2%20%3D%200%2C95%20%2B%200%2C49%5C%5C%20c%5E2%20%3D%201%2C44%5C%5Cc%20%3D%20%5Csqrt%7B1%2C44%7D%5C%5Cc%20%3D%201%2C2
Так как ABCD — прямоугольник, то AB = CD = , AD = BC = 0,7.
BD — гипотенуза прямоугольного треугольника ABD, поэтому найдём её через формулу теоремы Пифагора.
По теореме Пифагора получаем:
Значит, BD = 1,2
r = l·cos(φ)
Полупериметр p
p = (a+b+c)/2 = (2a+2a·sin(α/2))/2 = a+a·sin(α/2)
Площадь треугольника через радиус вписанной окружности
S = rp
Площадь треугольника через две стороны и угол меж ними
S = 1/2 a²·sin(α)
rp = 1/2 a²·sin(α)
l·cos(φ)·(a+a·sin(α/2)) = 1/2 a²·sin(α)
l·cos(φ)·(1+sin(α/2)) = 1/2 a·sin(α)
a = 2·l·cos(φ)·(1+sin(α/2))/sin(α)