В данной трапеции ∠ADB = ∠CDB, так как диагональ BD является биссектрисой острого угла, ∠ADB = ∠CBD как накрест лежащие при пересечении AD║BC секущей BD, значит ∠CDB = ∠CBD, ⇒ BC = CD = 5 см.
Проведем высоту СН. В прямоугольнике АВСН АН = ВС = 5 см, СН = АВ = 4 см.
ΔCDH: ∠CHD = 90°, по теореме Пифагора HD = √(CD² - CH²) = √(25 - 16) = √9 = 3 см
AD = 5 + 3 = 8 см
При вращении трапеции вокруг основания ВС получается: 1) круг, с радиусом АВ = 4 см; 2) цилиндрическая поверхность с радиусом основания 4 см и образующей AD = 8 см; 3) коническая поверхность с радиусом основания 4 см и образующей CD = 5 cм.
Проведём высоту к большему основанию, после чего получаем прямоугольный треугольник с одним из углов равным 45 градусам. Второй угол, соответсвенно, равен 180 - 90 - 45 = 45 градусов, т.е. образованный треугольник и прямоугольный, и равнобедренный. Т.к. после проведения высоты мы получили ещё и квадрат, значит меньшая боковая сторона равна проведённой высоте, т.е. она равна той части большего основания, которую мы и искали. Таким образом, по формуле площади трапеции мы получаем, что S = полусумме основания * на высоту, т.е. 10+5/2 * 5 = 37,5 см^2
АВС - равнобедренный.
ВМ=ВН
Треугольник ВВМ и треугольник СВМ. Они равны по признаку: (АВ=ВС - по условию, ВМ=ВН; угол В - общий) =) угол ВАН=угол ВСМ.