Дан ромб с острым углом α = 30° и радиусом вписанной окружности r = 3 см. Боковые грани пирамиды наклонены к плоскости основания под углом β = 60°.
В ромбе радиус вписанной окружности связан непосредственно со стороной через синус угла α. Сам радиус по определению представляет собой половину высоты ромба, которая равна стороне ромба, умноженной на синус угла α из образованного прямоугольного треугольника.
Высота в таком случае получается равна двум радиусам.
2r = a sinα.
Отсюда находим сторону а ромба и его периметр Р:
а = 2r/sinα = 2*3/0,5 = 12 см.
Р = 4а = 4*12 = 48 см.
Находим апофему А:
А = r/cos β = 3/cos 60° = 3/0,5 = 6 см.
Sбок = (1/2)РА = (1/2)*48*6 = 144 см².
Найти надо КС
ΔACB-прямоугольный и равнобедренный
ΔKAC прямоугольный
KC^2=AC^2+AK^2
AC из ΔABC: AB^2=AC^2+BC^2=2AC^2; 4^2=2AC^2; AC^2=16/2 ; AC=2√2
KC^2=(2√2)^2+1^2=8+1=9
KC=3