Периметр треугольника abc равен 36 см. сторона bc меньше стороны ab на 3 см, а строна ac равна 7 см. найдите стороны bc и ab треугольника abc. . за ранее.
Попробую объяснить на словах, но ты включи свое воображение. по условию задачи точки лежат на окружности. соединим их попарно линиями проходящими через центр окружности О. получим два отрезка mn и ef, которые делятся центром окружности пополам. рассмотрим два треугольника mon и eof. сторона no равна стороне eo и сторона mo равна fo. получаем, что в наших рассматриваемых треугольника есть по две равные стороны. углы о в этих треугольниках тоже будут равны, т.к. являются вертикальными. на основании всего этого изложенного вытекает, что треугольники равны между собой, следовательно и стороны mn и ef РАВНЫ.
Можно так. 1) Середина диагонали АС прямоугольника является точкой пересечения диагоналей, а также центром симметриии прямоугольника. Значит точка О делит отрезок РК пополам, тогда в ΔСОР =ΔАОК по двум сторонам и углу между ними (ОР=ОК, АО=ОС и углы РОС и АОК равны как вертикальные). Отсюда РС=АК, а также РСIIАК, Значит АРСК параллелогамм. 2) S(АРСК)=РС*CD, CD=√(AC²-AD²)=√(169-144)=5, PC=AK=4, S(АРСК)=4*5=20. 3) Проведем РМ II CD, РМ=5, КМ=8-4=4, РК=√(РМ²+КМ²)=√(25+16)=√41, 4) По теореме косинусов АК²=АО²+ОК²-2АО*ОК*cos(AOK). АК=4, АО=6,5, ОК=√41/2.
значит, 2х+3+7 = 36.
2х+10=36
2х=36-10
2х=26
х=13
ответ: ВС = 13, АВ = 16