= сума кутів трикутника = 180°, а якщо два кути відомі, то щоб знайти третій, потрібно 180°–130°=50°
2 = прямокутному трикутнику один кут дорівнює 90°.
Тоді інший кут дорівнює 180°-(90°+55°) = 180° - 145° = 35°
Відповідь: 35° , 90
3 = кут Б дорівнює 126 градусів, останні 2 кута по 32 градуса
4 = вообще не знаю наверное 7 см
5 = 550,60,70
Нехай 1кут - 5х, другий - 6х, а третій - 7х. Складаємо рівняння
5х + 6х+ 7х = 180°
18х = 180°
х = 180 ÷ 18
х = 10
10×5 = 50 - 1 кут
10×6=60 - 2 кут
10×7 = 70 - 3 кут
Відповідь: 50,60,70
6 ответ: СУМА КУТІВ ТРИКУТНИКА 180° ЗНАЧИТ ЗОВНІШНІЙ КУТ =240-180=60°
Суміжний з ним дорівнює 180-60=120°.
Кут 1 =180-120=60:2=30° і кут 2 тоже 30°
Объяснение:
Дано:
Прямоугольный треугольник АВС
угол С = 90 градусов
СН - высота
АН = 25 см
НВ = 9 см
Найти: СА, СВ, АВ и S - ?
1) Нам известно, что высота, которая опущена из вершины прямого угла, равна:
СН = √(АН * НВ),
СН = √(25 * 9);
СН = √225;
СН = 15 см;
2) S = 1/2 * СН * АВ,
АВ = АН + НВ = 25 + 9 = 34 (см);
S = 1/2 * 15 * 34 = 255 см^2
3) Треугольник СВН - прямоугольный. По теореме Пифагора:
СВ^2 = СН ^2 + НВ^2;
СВ^2 = 15^2 + 9^2;
СВ^2 = 225 + 81;
СВ^2 = 306;
СВ = 3√34 см;
4) Треугольник СВА - прямоугольный. По теореме Пифагора:
СА^2 = СН ^2 + АН^2;
СА^2 = 15^2 + 25^2;
СА^2 = 225 + 625;
СА^2 = 850;
СА = 5√34 см.
ответ: 5√34 см; 3√34 см; 34 см; 255 см^2.
Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано).
Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда
3BQ=4AD. BQ/AD=4/3.
Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD,
<ВРQ =<AРD как вертикальные).
Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*PH.
Площадь треугольника ABD равна Sabd=(1/2)*AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*MK.
Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН.
Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ.
Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН.
Площадь треугольника РМD равна
Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН
Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH.
(2/3)AD*BH=56 (дано). Тогда AD*BH=84.
Sbcmp=(11/84)*84=11.