1) 72° (так как сумма углов треугольника равна 180°)
2)49° (так как сумма углов треугольника равна 180°)
3)65° (так как внешний угол смежный с внутренним)
4)3° (так как внешний угол смежный с внутренним)
5)68° (биссектриса делить угол на 2 равных угла)
6)82° (биссектриса делить угол на 2 равных угла)
7) 44° (угол при высоте равен 90°, а сумма ∠Δ равна 180 °, тоесть нужно было от 180 отнять 90 и 46)
8) 8° (угол при высоте равен 90°, а сумма ∠Δ равна 180 °, тоесть нужно было от 180 отнять 90 и 82)
9) 7 (медиана соединяется с центром стороны, тоесть делит сторону AC пополам)
10) 29 (медиана соединяется с центром стороны, тоесть делит сторону AC пополам)
11) 10,5 и 11 (ну если середина то нужно на 2 делить)
12) 33 и 18,5 (ну если середина то нужно на 2 делить)
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500
25x^2=2500
x^2=100
x=-+10
-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
ac=a^2\c
a - катет
с - гипотенуза
a с индексом с - отрезок.
ac=900\50=18
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
ответ: 18 и 32 мм