Дано:
∆ ABC,
m, n, k — серединные перпендикуляры к сторонам AB, BC, AC
Доказать: m, n, k пересекаются в одной точке.
Доказательство:
Сначала докажем, что серединные перпендикуляры к двум сторонам треугольника пересекаются в одной точке.
Предположим, что m и k не пересекаются. Тогда m ∥ k.
Но прямые AB и AC пересекаются в точке A. Пришли к противоречию. Следовательно, прямые m и k пересекаются.
Обозначим точку пересечения прямых m и k как O.
По свойству серединного перпендикуляра к отрезку AO=OC и AO=BO. Следовательно, и OC=BO. Значит, точка O равноудалена от концов отрезка BC, следовательно, лежит на серединном перпендикуляре n к этому отрезку. Таким образом, все три серединных перпендикуляра m, n, k к сторонам треугольника ABC пересекаются в одной точке O.
Что и требовалось доказать.
Точка пересечения серединных перпендикуляров к сторонам треугольника является центром описанной около этого треугольника окружности
(поскольку OA=OB=OC).
Точка пересечения серединных перпендикуляров к сторонам треугольника — одна из четырех замечательных точек треугольник
Данный тр-к и маленький тр-к над квадратом подобны, т. к. сторона, параллельная основанию, отсекает тр-к, подобный данному.
Из подобия тр-ка следует пропорциональность сходственных сторон:
9/5=h/(h-5); 9(h-5)=5h; h=45/4=11,25 см. вроде так