М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maksimkakravchenko
maksimkakravchenko
09.06.2023 06:22 •  Геометрия

Треугольник авс равнобедренный с основанием ав . через середину его боковых сторон проведёная премая с. докажите. что прямая ав и с поролейны

👇
Ответ:
Dimon22872
Dimon22872
09.06.2023
Если в равнобедренном  треугольнике провести прямую, параллельную основанию, то  мы  сразу получим подобный треугольник. Почему?  Угол   вверху одинаков.  Внизу углы тоже равны - параллельная  и  секущая. 
А  прямая будет параллельна основанию потому, что отсекаются половины сторон. То есть отрезанный треугольник будет  в два раза меньше,  чем был  первый.
4,5(99 оценок)
Открыть все ответы
Ответ:
Scorpionoid
Scorpionoid
09.06.2023

Угол α между вектором a и b (формула):

cosα=(Xa*Xb+Ya*Yb+Za*Zb)/[√(Xa²+Ya²+Xa²)*√(Xb²+Yb²+Zb²)].

Следовательно, надо найти координаты векторов СА и СВ и по приведенной выше формуле вычислить косинус угла между этими векторами.

Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}.

Вектор СА{6-1;2-(-5);4-8} ={5;7;-4},  

Bектор СВ{-3-1;5-(-5);-7-8} = {-4;10;-15}. Тогда

cos(CA^CB) = (5*(-4)+7*10+(-4)*(-15))/[√(25+49+16)*√(16+100+225)] = 0,6279.

<ACB = arccos(0,6279) ≈ 51,1°.  Это ответ.

Или по теореме косинусов:

Найдем длины сторон треугольника АВС (модули векторов) АВ, СA и СB, зная их координаты.

Вектор АВ{-9;3;-11}, вектор СА{5;7;-4}, вектор СВ{-4;10;-15}.

|AB|=√(81+9+121) = √211

|CA|=√(25+49+16) = √90

|CB|=√(16+100+225)=√341.

Тогда по теореме косинусов:

Cos(CA^CB)=(90+341-211)/(2*√90*√341) = 220/350,4 ≈ 0,6279.

ответ тот же, что и в первом случае.

4,4(13 оценок)
Ответ:
kolisnyk98
kolisnyk98
09.06.2023
Доказательство.
Построим прямоугольный треугольник АВС с прямым углом АСВ.
Проведем в нем медиану CD из прямого угла к стороне АВ. Согласно свойству медианы получим, что отрезок BD равен отрезку AD.
Докажем, что медиана CD равна половине гипотенузы АВ.
Достроим медиану CD так, что отрезок DM будет равен CD. В результате получим четырехугольник AMBC.
Для начала докажем, что полученный четырехугольник АМВС является прямоугольником.
Рассмотрим треугольники ADM и CDВ. Они равны, так как отрезки AD и AB равны, а также отрезки MD и CD равны, а углы между этими сторонами равны как вертикальные. Поскольку эти треугольники равны (по двум сторонам и углу между ними), то их стороны АМ и ВС также равны.
Если аналогично рассмотреть треугольники ADC и BDM, то они также равны, а соответственно их стороны АС и ВМ равны.
Из этого следует, что четырехугольник АМВС является прямоугольником.
По свойству диагоналей прямоугольника, их диагонали пересекаются в точке, которой делятся пополам. Поэтому, можно утверждать, что отрезок CD равен половине отрезка АВ.
Таким образом, мы доказали, что медиана прямоугольного треугольника, проведенная из прямого угла, равна половине его гипотенузы.
Доказательство завершено.
Ставлю максимально докажите, что медиана прямоугольного треугольника, проведённая к гипотенузе, равн
4,4(93 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ