Центр окружности, описанной около прямоугольника, - это точка пересечения его диагоналей, а радиус - половина диагонали.
Тогда диагональ:
d = 2R = 2 · 7,5 = 15 см.
Пусть х - одна часть, тогда стороны 3х и 4х.
Две смежные стороны и диагональ образуют прямоугольный треугольник. По теореме Пифагора:
d² = (3x)² + (4x)²
9x² + 16x² = 225
25x² = 225
x² = 9
x = 3 (x = - 3 не подходит по смыслу задачи)
3 · 3 = 9 см - одна сторона
3 · 4 = 12 см - другая сторона прямоугольника.
P = (9 + 12) · 2 = 21 · 2 = 42 см
2) Медианы в точке пересечения делятся в отношении 2:1, считая от вершины. Используя AM:BF=8:5 и указанное свойство, а также в целях уменьшения числа дробей в решении, положим ОМ=8t; OF=5t; AO=16t; BO=10t.
3) Как известно, все три медианы треугольника делят его на 6 равновеликих треугольника, поэтому вместо использования ΔAOF можно использовать ΔBOM (кто этот факт не знает, может рассуждать, например так: у этих Δ есть равные углы (как вертикальные), а прилежащие к ним стороны таковы, что BF=2OF, а AO=2OM, поэтому формула для площади "половина произведения сторон на синус угла между ними" даст одинаковый ответ.
4) ΔBOM лучше тем, что он прямоугольный. По теореме Пифагора выражаем BM: BM²=BO²-OM²; BM=6t (на самом деле я не применял теорему Пифагора, а просто заметил, что этот Δ подобен египетскому).
5) Площадь ΔBOM=24=8t·6t/2 (половина произведения катетов), поэтому t²=1; t=1; BF=15t=15
ответ: BF=15