Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
4,7(9 оценок)
Ответ:
02.09.2021
Используем формулу длины биссектрисы: . Обозначим АВ=с, ВС=а. Возведём в квадрат: Отсюда а*с=36+12=48 (1). Биссектриса делит сторону АС пропорционально боковым сторонам. 3/с = 4/а или с = (3/4)*а. Подставим в уравнение (1): а*((3/4)*а) = 48 а² =(48*4) / 3 = 64 а = √64 = 8. с = (3*8) / 4 =6. Находим радиус окружности, вписанной в треугольник АВС: Аналогично находим радиус окружности, вписанной в треугольник ДВС: r₁=1,290994. Разность r - r₁ = 0,645498. По теореме косинусов находим величину угла С: . С = 0.812756 радиан = 46.56746°. Центры окружностей с радиусами r и r₁ лежат на биссектрисе угла С. Тангенс угла С/2 = tg(46.56746 / 2) = tg 23.28373° = 0,43033. Тогда длина отрезка КМ равна: КМ = (r-r₁) / tg(C/2) = 0,645498 / 0,43033 = 1,5.