обозначим меньший треугольник АВС, больший треугольник А1В1С1,
по условию эти треугольники подобны...
Р(АВС) : Р(А1В1С1) = 4:5 (это и есть коэффициент подобия)
известно:
периметры подобных фигур относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия
(объемы относятся как куб коэфф.подобия)
S(АВС) : S(А1В1С1) = 16:25
или 25*S(АВС) = 16*S(А1В1С1)
S(А1В1С1) = (25/16)* S(АВС) АВС--меньший треугольник
S(А1В1С1) - S(АВС) = 45 (см²) (по условию)
(25/16)*S(АВС) - S(АВС) = 47 (см²)
S(АВС)*((25/16) - 1) = 45 (см²)
S(АВС)*(9/16) = 45
S(АВС) = 27*16/9 = 3*16 = 48 (см²)
Не уверена, что все правильно, но я пыталась
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
Угол АСД - прямой.
Пусть в - большее основание, а - меньшее основание.
По заданию в² - а² = 25.
Проведём высоту СЕ.
Отрезок АЕ = (в+а)/2, отрезок ЕД = (в-а)/2.
Заданное условие разложим на множители: (в-а)(в+а) = 25.
Разделим обе части на 4:
((в-а)/2)*((в+а)/2) = 25/4.
По свойству высоты из прямого угла корень из произведения АЕ*ЕД равен высоте трапеции.
ответ: высота равна √(25/4) = 5/2 = 2,5.