Дано: АВСD – ромб, BD пересекается с AC в точке O. Доказать: что BD перпендикулярна AC, и каждая диагональ делит соответствующие углы ромба пополам например, что угол ВАС = углу DАС. Доказательство: 1)АB = АD по определению ромба,поэтому треугольник ВАD равнобедренный; 2)так как ромб – параллелограмм, его диагональ пересекаются и делятся пополам; 3)АО – медиана равнобедренного ВАD; 4)АО – высота и биссектриса; 5)поэтому BD перпендикулярно AC и треугольник ВАС = треугольник DАС. Теорема доказана.
1) рисунок во вложении АД=ДС (усл), тогда треуг АДС р/б, тогда углы при основании равны, тогда уг ДСА = уг ДАС = уг ВАД = 20 град, поскольку АД биссектриса. Тогда уг АДС = 180 - 20 - 20 = 140 уг АВС = 180 - 20 - 20 - 20 = 120 град
2) рисунок во вложениях Равн = АВ + ВН + АН = 15, тогда АВ + АН = 10, поскольку НВ = 5 по усл
поскольку НВ и медиана и высота, то треуг АВМ р/б, тогда АВ = ВМ треуг АВН = треуг МВН (по трем сторонам), тогда АВ + АН = ВМ + НМ = 10, тогда Равм = АВ + АН + ВМ + НМ = 10 + 10 = 20 см
1) рисунок во вложении АД=ДС (усл), тогда треуг АДС р/б, тогда углы при основании равны, тогда уг ДСА = уг ДАС = уг ВАД = 20 град, поскольку АД биссектриса. Тогда уг АДС = 180 - 20 - 20 = 140 уг АВС = 180 - 20 - 20 - 20 = 120 град
2) рисунок во вложениях Равн = АВ + ВН + АН = 15, тогда АВ + АН = 10, поскольку НВ = 5 по усл
поскольку НВ и медиана и высота, то треуг АВМ р/б, тогда АВ = ВМ треуг АВН = треуг МВН (по трем сторонам), тогда АВ + АН = ВМ + НМ = 10, тогда Равм = АВ + АН + ВМ + НМ = 10 + 10 = 20 см
Дано: АВСD – ромб, BD пересекается с AC в точке O. Доказать: что BD перпендикулярна AC, и каждая диагональ делит соответствующие углы ромба пополам например, что угол ВАС = углу DАС. Доказательство: 1)АB = АD по определению ромба,поэтому треугольник ВАD равнобедренный; 2)так как ромб – параллелограмм, его диагональ пересекаются и делятся пополам; 3)АО – медиана равнобедренного ВАD; 4)АО – высота и биссектриса; 5)поэтому BD перпендикулярно AC и треугольник ВАС = треугольник DАС. Теорема доказана.