Через вершину конуса проведена плоскость под углом 45 к плоскости основания. эта плоскость пересекает основание по хорде, которая видна из центра основания под углом 60. найдите объем конуса, если расстояние от вершины конуса до хорды равно 6 см
Сечение конуса данной плоскостью имеет вид равнобедренного треугольника АSВ, высота которого SН = 6 см (дано) наклонена под углом 45° к плоскости основания конуса (дано). => Прямоугольный треугольник SОН равнобедренный и SО = ОН. По Пифагору: SH² = 2·SO² или 36 = 2·SO² => SО = ОН = 3√2 см.
По теореме о трех перпендикулярах ОН перпендикулярна АВ => АН=НВ по свойству перпендикуляра к хорде из центра окружности. Треугольник АВО равнобедренный и ОН - высота, медиана и биссектриса угла АОВ = 60° (дано) => ∠AОН = 30°. => АО = 2·АН. По Пифагору А0² = АH²+OН² или З·АH² = OН² => З·АН² = 18, АН = √6, АО = 2√6 см. АО = R (радиус основания конуса). Тогда объем конуса равен V = (1/3)·Sо•Н или
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
V = 24√2·π.
Объяснение:
Сечение конуса данной плоскостью имеет вид равнобедренного треугольника АSВ, высота которого SН = 6 см (дано) наклонена под углом 45° к плоскости основания конуса (дано). => Прямоугольный треугольник SОН равнобедренный и SО = ОН. По Пифагору: SH² = 2·SO² или 36 = 2·SO² => SО = ОН = 3√2 см.
По теореме о трех перпендикулярах ОН перпендикулярна АВ => АН=НВ по свойству перпендикуляра к хорде из центра окружности. Треугольник АВО равнобедренный и ОН - высота, медиана и биссектриса угла АОВ = 60° (дано) => ∠AОН = 30°. => АО = 2·АН. По Пифагору А0² = АH²+OН² или З·АH² = OН² => З·АН² = 18, АН = √6, АО = 2√6 см. АО = R (радиус основания конуса). Тогда объем конуса равен V = (1/3)·Sо•Н или
V = (1/3)·π·24·3√2 = 24√2·π.