Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.
Опустим из вершины B высоту BH на основание AC.
Рассмотрим треугольники ABH и BCH.
Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.
Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.
Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.
Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.
Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.
Следовательно, BH является биссектрисой угла ABC.
ВС=6 см, ∠В=120°
Найти S.
Проведем высоты ВН и СК. Рассмотрим ΔАВН - прямоугольный.
∠АВН=120-90=30°, значит АН=КД=1\2 АВ=2 см.
ВН=√(АВ²-АН²)=√(16-4)=√12=2√3 см.
S=(АД+ВС):2*ВН=(АН+КН+КД+ВС):2*2√3=(10+6):2*2√3=16√3 см²