Основание пирамиды - правильный треугольник. Следовательно, радиус описанной около него окружности (ОС) равен удвоенному радиусу вписанной окружности R=2*r = 6. А высота основания СН = 9. Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды. Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO. Рассмотрим прямоугольный треугольник ОCQ. В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности). Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)². Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5. Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150. ответ: Vш ≈ 1150.
Угол ВМО - линейный угол двугранного угла, образованного плоскостью треугольника с данной плоскостью α. ВМ и МN перпендикулярны АС, значит плоскость ANC (плоскость α) перпендикулярна плоскости BMN. Углы между наклонными (две другие стороны треугольника) и плоскостью - это углы между этими наклонными и их проекциями на эту плоскость. Перпендикуляр ВО к плоскости α лежит в плоскости BMN (О на прямой MN). Надо найти синусы углов ВСО и ВАО. Прямоугольные треугольники ВАО и ВСО равны по гипотенузе и катету. Углы ВСО и ВАО равны. Из прямоугольного треугольника ВМО : , sinВСО = sin ВАО = ответ