Окружности радиусов 33 и 99 касаются внешним образом. точки а и в лежат на первой окружности, точки с и в — на второй. при этом ас и bd — общие касательные окружностей. найдите расстояние между прямыми ав и cd
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
Так как прямой угол опирается на диаметр, гипотенуза прямоугольного треугольника является диаметром окружности, описанной около треугольника. Медиана, проведенная из вершины прямого угла - радиус описанной окружности, а т.М - центр окружности. Значит СМ=АМ=10=R Известно, что медиана делит прямой угол в соотношении 1:2, значит: х+2х=90 3х=90 х=30 2х=60 Меньшему катету соответствует больший угол, значит ΔАМС - равнобедренный (АМ=СМ) и угол АСМ= 60 градусов => угол САМ=60 градусов => угол СМА=60 градусов, значит ΔАМС - равносторонний. Меньший катет АС=10.
Они подобны - угол Й общий, углы А и С прямые
Коэффициент подобия
k = СН/АУ = 99/33 = 3
Расстояние между центрами окружностей
УН = 33+99 = 132
Из подобия
k = ЙН/ЙУ = (ЙУ + УН)/ЙУ
3 = (ЙУ + 132)/ЙУ
3*ЙУ = ЙУ + 132
2*ЙУ = 132
ЙУ = 66
ЙН = 66+132 = 198
-------------
В треугольнике СЙН угол Й равен 30 градусам, т.к. гипотенуза ЙН = 198 в два раза больше катета СН = 99
----------
по теореме Пифагора
ЙС² + СН² = ЙН²
ЙС² + 99² = 198²
ЙС² = 198² - 99² = (2*99)² - 99² = 3*99²
ЙС = 99√3
-------
СЕ - высота треугольника ЙСН
Найдём её через площадь треульгоника
S = 1/2*ЙС*СН = 1/2*ЙН*СЕ
ЙС*СН = ЙН*СЕ
99√3*99 = 198*СЕ
99√3 = 2*СЕ
СЕ = 99√3/2
----
По теореме пифагора из треугольника ЙСЕ
ЙЕ² + СЕ² = ЙС²
ЙЕ² + 99²*3/4 = 99²*3
ЙЕ² = 99²*(3-3/4) = 99²*9/4
ЙЕ = 99*3/2 = 297/2
--------
Треугольники СЕЙ и АЦЙ подобны, коэффициент подобия 3,
ЙЦ = ЙЕ/3 = 99/2
И финальный аккорд
ЦЕ = ЙЕ - ЙЦ = 297/2 - 99/2 = 198/2 = 99