Приветик) Так как у равнобедренного треугольника две стороны равны, то получаем: 30 + 30 = 60(углы при основании) 180 - 60 = 120 ( угол при вершине) ответ : 120 Удачки тебе)
а) Треугольник ABE= треугольнику CBD Доказательство: АВ = ВС так как треугольник АВС - равнобедренный по условию < ABE = < CBE (это один и тот же угол) Медиана делит противополжную сторону пополам, а значит в равнобедренном треугольнике ABC медианы AE и CD делят стороны АВ и ВС на четыре равных отрезка. Отсюда BE= BD. Следовательно треугольник ABE = треугольнику CBD по двум сторонам и углом между ними.
б) Треугольник DOE и треугольник AOC равнобедренные Доказательство: Медианы, высоты и биссектрисы проведенные с углов основания в равнобедренном треугольнике равны между собой. Медианы в точке пересечения делятся на отрезки в отношении 2:1 начиная от угла. А значит при любой длине медиан АО/ОЕ = СО/OD = 2/1. Отсюда АО = СО; ОЕ = OD следовательно треугольник DOE и треугольник AOC равнобедренные
в) DB-биссектриса угла DOE Вот здесь по идее условие неверно. Должно быть ОB-биссектриса угла DOE. Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Медианы AE и CD равны, а значит что точка их пересечения лежит на высоте треугольника АВС. Следовательно ОВ совпадает с биссектрисой, медианой, высотой АВС. DE || AC (средняя линия АВС) , значит OB перпендикуляр DE. Отсюда ОВ - биссектриса угла DOE
Так как у равнобедренного треугольника две стороны равны, то получаем:
30 + 30 = 60(углы при основании)
180 - 60 = 120 ( угол при вершине)
ответ : 120
Удачки тебе)