Треугольник аов=треугольнику вос по стороне и двуи прилежащим к ней углам. у них ов-общая, угол аов=углу вос по условию, угол аво=углу сво, так как во-биссектриса у равных треугольников соответственные стороны равны, поэтому ав=вс и треугольник авс-равнобедренный с основанием ас. аов=110градусов, 1/2угла а+1/2углав+110градусов=180градусов,1/2(угола+уголв)=180градусов-110градусов=70градусовугол а+уголв=70градусов*2=140градусов, тогдаугол с=180градусов -140градусов=40градусов. так как треугольник равнобедренный то у него углы при основании равны, угол а=40градусов, угол в=180градусов -(40+40)=100 градусовответ 40градусов, 40градусов, 100градусов
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
Радиус вписанной окружности равен половине стороны квадрата.
R=12/2=6 см.