Через 3 точки можно провести плоскость, и только одну. Стороны сечения куба этой плоскостью будут лежать на гранях куба. Данное сечение куба - трапеция КЕВ1С с большим основанием В1С и меньшим ЕК. В1С= диагональ грани и равна а√2 по свойству диагонали квадрата. ЕК=(а/2)√2 на том же основании КС²=ДС²+КД²=а²+ 0,25а²=1,25а² Проведем высоту КН трапеции. Высота равнобедренной трапеции из тупого угла делит большее основание на отрезки, равные полуразности и полусумме оснований.
Площадь трапеции равна произведению высоты на полусумму оснований: S=KH*(EK+B1C):2= =1,5а√0,5*(0,5а√2+а√2):2= =(1,5а√0,5)*0,75а√2= =1,5а*0,75а*√(0,5*2)=1,125а² ------ Для нахождения площади трапеции существует не только та формула, которую в большей части случаев мы используем. В приложенном рисунке дана формула для произвольной трапеции и для равнобедренной трапеции через стороны. По ней площадь получается та же, что по обычной формуле через назождение высоты. S=1,125а² ------- [email protected]
1 Это ответ :) На самом деле тут нужна теория. 1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1. С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1. Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O. Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C. Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1. Само собой, плоскости AB1D1 и BDC1 параллельны. 2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1. Тогда из параллельности плоскостей AB1D1 и BDC1 AO/OO1 = A1M1/M1C1 = 1; CO1/OO1 = CM/MA = 1; То есть все три отрезка A1O = OO1 = CO1. Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям). Вот, теория закончилась. Дальше решение :) A1C = 3, => OO1 = 1;
Найдем х, Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений ⇒22²=(6х)²+(6х)²+(7х)²
484=(36+36+47)х²
484=121х²
х²=4
х=2 ⇒Стороны будут: 12,12,14 (см)
V=12*12*14=2016 (cм³)
ответ:2016 см³