Пусть x+2 - диагональ x- сторона квадрата тогда по т. Пифагора: (x+2)^2=x^2+x^2 x^2+4+4x=2x^2 x^2-4x-4=0 D=32=4√2 x1,2=(4+-4√2)/2 x1= 2+2√2 x2=2-2√2 - не подходит ответ:2+2√2 см
4см, 10 см -- основания трапеции. (Диагональ разбивает трапецию на 2 треугольника, их средние линии 2 и 5см, значит их основания, а они являются трапеции равны 4 и 10 см). В трапеции опустим высоты из вершин тупых углов. Они разбивают большее основание на отрезки 3, 4, 3 см. Высоты, опущенные из вершин тупых углов разбивают трапецию на 2 равных прямоугольных треугольника и прямоугольник. Гипотенуза прямоугольного треугольника равна 6, катет 3,значит , угол образованный высотой и боковой стороной 30 градусов, значит угол при большем основании 60 градусов, а тупые углы по 120 градусов
Дано: АВСD - равнобокая трапеция, АВ=СD= 6 см, МN- средняя линий, МО= 2 см; ОN=5 см. Найти: ∠ВАD, ∠АВС Решение. ΔАВС. ОМ- средняя линия, равна 2 см, значит ВС=4 см., средняя линия в 2 раза меньше ВС. ΔАСD. ОN- средняя линия равна 5 см. значит АD= 10 см.Построим СК║АВ. АВСК - параллелограмм, противоположные стороны параллельны и равны: АК=ВС=4 см.СК=АВ=6 см. ΔСDК равнобедренный: СК=СD= 6 см. Построим СН⊥АD, тогда КD=АD-АК=10-4=6 см. Но СН также является медианой в равнобедренном ΔКСD, значит КН=НD=6/2=3 см. ΔСDН. cosD=HD/CD=3/6=0,5. ∠НDС=60°. ∠ВАD=СDА=60°. ∠АВС=∠ВСD=180-60=120°. ответ: 60°; 120°.
x- сторона квадрата
тогда по т. Пифагора: (x+2)^2=x^2+x^2
x^2+4+4x=2x^2
x^2-4x-4=0 D=32=4√2
x1,2=(4+-4√2)/2
x1= 2+2√2
x2=2-2√2 - не подходит
ответ:2+2√2 см