Сумма острых углов прямоугольного треугольника равна 90°.
Гипотенуза прямоугольного треугольника больше каждого из катетов.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Две высоты прямоугольного треугольника совпадают с его катетами.
Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.
Теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Треугольник ACD - равнобедренный (угол D= угол CAD)
За теоремой Пифагора находим сторону AD. AD=√AC^2+CD^2; AD=√4^2+4^2=√16+16=√32=4√2
Треугольник ABC-равнобедренный (угол BAC=угол BCA=45°)
Пускай AB=BC=x
За теоремой Пифагора: x^2+x^2=4; 2х^2=4; х^2=2; х=±√2
х=-√2 - не удовлетворяет условию задачи
х=√2
AB=BC=√2
S=√2×1/2(√2+4√2)
S=√2×1/2(5√2)=5
Примечания: х^2(икс квадрат)