с английским нужно раскрыть скобки и поставить в нужную форму
1. We (1) (miss) the first act of the play because when we (2) (arrive) at the theatre the performance already (3) (start) .
2. At the time of the trial last summer Hinkley (4) (be) in prison for eight months.
3. The staff (5) (pay) weekly but now they receive a monthly salary.
4. Denise (6) (modal verb + leave) school early on Wednesday because she (7) (take) her driving test.
5. What’s the point in (8) (argue) with people who (9) (hold) very strong opinions?
6. Many of the survivors (10) (work) in the fields when the earthquake (11) (to strike) .
Phil (12) (stand) at the door soaked from head to toe: he (13) (run) in the rain.
8. Jim (14) (leave) on the early flight the next morning so he (15) (make) his excuses and (16) (leave) the party before midnight.
9. It seems to me, Minister, that the Government (17) (break) all its pre-election promises regarding the Health Service, (18) ?
10. It (19) (must + rain) really hard. All the passers-by (20) (be) soaked through.
№9
Роз-ня
Проведемо висоту DM
З ΔADM(∠M=90°), DM=1/2*AD(за властивістю катета що лежить навпроти ∠30°)
DM=16/2=8(см)
S(ABCD)=(DC+AB)/2*DM
S(ABCD)=(4+32)/2*8=144(см²)
Відповідь:
144см²
№10
Роз-ня
З ΔABE(∠E=90°), за Т. Піфагора, AE=√(AB²-BE²)
AE=√(100-64)=6(см)
Проведемо висоту CM
ΔABE=ΔCMD⇒AE=MD=6(см)
Нехай, BC=x(см), то AD= x+12(см)
P(ABCD)= 10+x+10+x+12
2x+32=64
x+16=32
x=12
Отже, BC=12(см), то AD= 24(см)
S(ABCD)=(BC+AD)/2*BE
S(ABCD)=(12+24)/2*10=180(см²)
Відповідь:
180см²
№11
Роз-ня
Проведемо висоту ВM
ВM=CA=15(см)
З ΔADM(∠M=90°), за Т. Піфагора, MA=√(BA²-BM²)
MA=√(625-225)=20(см)
Нехай, CB=x(см), то DA= x+20(см)
P(ABCD)= 15+x+25+x+20
60+2x=80
30+x=40
x=10
Отже, CB=10(см), то DA= 30(см)
S(ABCD)=(CB+DA)/2*BM
S(ABCD)=(10+20)/2*15=225(см²)
Відповідь:
225см²
Насчет правильности проверь, но ход решения такой
Т.к. осевое сечение цилиндра - квадрат, то диаметр и высота цилиндра равны d=h=√64=8 см.
Площади оснований равны S1=πR²=π*4²=16π см²
Площадь боковой поверхности равна S2=πdh=π*8*8=64π см²
Площадь полной поверхности равна S=2S1+S2=32π+64π=96π см²