См. Объяснение
Объяснение:
Угол АСЕ по отношению к треугольнику АВС является внешним углом, который равен сумме углов А и В.
Действительно, так как сумма внутренних углов треугольника равна 180°, то:
∠АСВ = 180° - (∠А +∠В) = 180° - х - уравнение (1)
С другой стороны, так как угол ВСЕ - развёрнуты (равен 180 °), то:
∠АСВ = 180° - (∠АСD +∠DCE) = 180° - у - уравнение (2)
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
1) Катет 1= 4 корня из 3
катет 2= 4
2) 8 корней из 3
3) 4
Объяснение:
1) поскольку один угол 60 градусов, то второй 30, а мы знаем, что катет против угла в 30 градусов равен половине гипотенузы. Отсюда катет1 = 0.5*8=4. Так же мы знаем, что есть теорема пифагора.
8*8=(4*4)+(x*x)
64=16+x*x
x*x=48
x=корень 48
отсюда первый катет можно сократить как 4 корня из 3, второй катет равен 4
2)Площадь равна полупроизведению катетов, то есть (катет1*катет2)/2
(4*4корняиз3)/2, или (16корнейиз3)/2, или 8 корней из 3
3)Радиус описанной окружности - это половина ее диаметра, а диаметром описанной окружности вокруг прямоугольного треугольника - это его гипотенуза. Значит, радиус - это половина гипотенузы. 8:2=4
Расстоянием между точками А и В называют отрезок