ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектриса
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-AD
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.ответ:Угол DFA=108°.
Объяснение:
1.Проведем в плоскости α прямую а’ перпендикулярно плоскости β. Две прямые, перпендикулярные одной и той же плоскости, параллельны, следовательно, а' ║а.
Если прямая вне плоскости параллельна какой нибудь прямой на ней, то эта прямая параллельна и самой плоскости. Отсюда следует, что если плоскости α и β взаимно перпендикулярны, то прямая, проведенная перпендикулярно плоскости β, параллельна плоскости α или принадлежит ей.
2.По условию плоскость АВСD перпендикулярна плоскости ∆АВМ.
Если две плоскости взаимно перпендикулярны, то прямая, проведенная в одной плоскости перпендикулярно к линии пересечения плоскостей, перпендикулярна к другой плоскости. АD ⊥ АВ (стороны квадрата). ⇒
АD перпендикулярна плоскости треугольника АВМ.
Если прямая перпендикулярна плоскости, то она перпендикулярна каждой прямой, которая лежит в этой плоскости и проходит через точку пересечения.
DA перпендикулярна плоскости ∆ АВМ, следовательно, перпендикулярна МА. Угол DАМ=90°
O - центр описанной окружности △ABC. Радиус перпендикулярен касательной, OC⊥CD. По условию AC⊥CD, следовательно O∈AC, AC - диаметр, ∠ABC=∠AMC=90 (опираются на диаметр). ∠DAB=180-∠ABC=90 (односторонние углы при AD||BC). ABCM - прямоугольник.
CM=h, AM=BC=a, MD=2
Высота из прямого угла, CM^2=AM*MD
h^2=2a
По теореме Пифагора AM^2+CM^2=AC^2
a^2 +h^2 =48 <=>
a^2 +2a -48 =0 <=>
a=√(1+48)-1 =6 (a>0)
h=√(2*6)=2√3
S=(a+a+2)h/2 =(a+1)h =14√3