М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kate816
kate816
05.09.2021 03:19 •  Геометрия

1)в прямоугольном треугольнике: 1)а=9дм, b=12дм. найдите c,h,a1, b1, где a1,b1-проекции катетов на гипотенузу c; 2) a=12дм, c=13дм, найдите b,h,a1.b1.

👇
Ответ:
Bbob
Bbob
05.09.2021

с=корень(a^2+b^2)

c=корень(9^2+12^2)=15 дм

 

a1=a^2/c

a1=9^2/15=5.4 дм

 

b1=c-a1

b1=15-5.4=9.6 дм

 

h=корень(a1*b1)

h=корень(5.4*9.6)=7.2 дм

 

2)b=корень(c^2-a^2)

b=корень(13^2-12^2)=5 дм

 

a1=a^2/c

a1=12^2/13=144/13 дм

 

b1=b^2/c

b1=5^2/13=25/13 дм

 

h=корень(a1*b1)

h=корень(144/13*25/13)=60/13 дм

4,5(68 оценок)
Открыть все ответы
Ответ:
reginaarslanov
reginaarslanov
05.09.2021
Плоский угол при вершине пирамиды- это угол при вершине боковой грани, противолежащей стороне при основании пирамиды.
Так как пирамида правильная, то боковые рёбра равны треугольник боковой грани равнобедренный, а учитывая то, что угол при его вершине равен 60°, он ещё и правильный, то есть равносторонний, значит все рёбра пирамиды равны.
Высота пирамиды имеет основание в центре описанной окружности около основания пирамиды.
Пусть сторона основания (ребро пирамиды) равна а, тогда R=a/√3.
В прямоугольном треугольнике, образованном высотой пирамиды, её боковым ребром и радиусом описанной около основания окружности:
a²=R²+h²,
a²=a²/3+4²,
a²-16=a²/3,
3а²-48=а²,
2а²=48,
а²=24.
Площадь боковой грани: S=a²√3/4=24√3/4=6√3 см².
Площадь боковой поверхности: Sб=3S=18√3 см² - это ответ. 
4,4(16 оценок)
Ответ:
kdgsteam
kdgsteam
05.09.2021
Как ни странно, для решения таких задач важно максимально упростить форму записи соотношений, которые получаются из условия.
Треугольник ABC, высоты AA1; BB1; CC1; точка пересечения H;
Задано AH/HA1 = 1; BH/HB1 = 2; надо найти CH/HC1;
Теорема Ван-Обеля дает
AC1/C1B + AB1/B1C = AH/HA1 = 1;
BC1/C1A + BA1/A1C = BH/HB1 = 2;
Теорема Чевы (без учета ориентированности, что тут не важно) дает
(AC1/C1B)*(BA1/A1C)*(CB1/B1A) = 1;
А найти надо CH/HC1 = CB1/B1A + CA1/A1B;
Вот теперь надо что-то делать, чтобы можно было с этим работать.
Пусть AC1/C1B = a; BA1/A1C = b; CB1/B1A = c;
тогда вся эта абракадабра переписывается так
a + 1/c = 1;
1/a + b = 2;
abc = 1;
и надо найти c + 1/b;
теперь видно, что эту систему очень легко решить.
из второго уравнения 1 + ab = 2a; => 1/c = 2a - 1; тогда из  первого получается 3a - 1 = 1; a =2/3; далее b = 1/2; c = 3;
c + 1/b = 5 = CH/HC1;

Вы проверьте, мало ли, я тут "в пол глаза" решаю, мог и что-то не так сделать.
4,8(87 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ