Радиус вписанной окружности равен отношению площади треугольника к его периметру. найдем периметр: р=5*2+6=16. найдем площадь треугольника, для этого проведем из вершины к основанию высоту. так как в равнобедренном треугольнике высота является также и медианой, то основание разделилось на две равные части (6/2=3). найдем высоту по теореме пифагора: h²=5²-3²=25-9=16 h=4. теперь находим площадь треугольника, которая равна половине произведения основания на высоту: s=1/2*6*4=12 находим радиус вписанной окружности: r=s/p=12/16=0,75
Высота равнобедренного треугольника, опущенная на основание является и медианой и делит исходный треугольник на два равных прямоугольных треугольника (один катет общий, два других - половинки основания исходного тр - ка, также равны и гипотенузы как боковые стороны равнобедренного тр-ка) Это справедливо и для второго равнобедренного тр-ка. Имеем 4 равных прямоугольных треугольника (все гипотенузы равны и по теореме Пифагора), они попарно образуют равнобедренные тр-ки, которые тоже равны (равны основания и боковые стороны).
2x=35
X=17.5
B=17.5+5=22.5(вторая сторона)
ответ: 17.5 и 22.5