6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Объяснение:
10) Угол ABC = 50°, он вписан в окружность и опирается на дугу AC, содержащую точку D, следовательно дуга AC = 2 * угол ABC = 100°. Зная, что градусная величина окружности = 360°, значит дуга AC, содержащая точку B равна 360 - 100 = 260°. Угол ADC как раз и опирается на эту дугу и равен половине ее градусной величине = 260 / 2 = 130°
ответ: 130°
12) Так как хорда AC проходит через центр окружности, значит что AC - диаметр данной окружности. И он делит окружность пополам. То есть дуги AB и BC равны половине окружности. AB + BC = 360 / 2 = 180
Рассмотрим треугольник ABC, он равнобедренный так как AB = BC, следовательно по свойству равнобедренного треугольника его углы при основании равны
BAC = CBA. Так как данные углы вписаны в окружность и опираются соответственно на дуги BC и AB, то значит дуги также равны
А их сумма равна 180°. Тогда дуга AB = дуга BC = 90°
ответ: 90°; 90°;
16) AB - диаметр, так как проходит через центр окружности. Тогда дуга DC равна 180° - 50° - 70° = 60°. Центральный угол DOC опирается на эту дугу и равен ей DOC = 60°
Рассмотрим треугольник OCD, две его стороны - радиусы окружности, то есть они равны. По свойству равнобедренного треугольника углы при основании равны. Угол напротив основания равен 60. Сумма других двух равных 120. То есть все углы в треугольнике равны 60°.Треугольник равносторонний и все его стороны, включая DC равны радиусу окружности = 15 см
ответ: 15 см
Объяснение:
Сумма двух противолежащих углов равнобедренной трапеции = 180°
(180 - 20 )\ 2 = 80 ° - меньший угол
80 + 20 = 100° - больший угол