Развернутый угол - угол, обе стороны которого лежат на прямой. Градусная величина развернутого угла 180° Если пересекаются две прямые, они образуют две пары неразвернутых углов. У каждой пары одна сторона общая, а две другие являются продолжением одна другой и вместе составляют развернутый угол. Такие углы называются смежными, их сумма равна 180°. Сумма данных углов равна 126°, следовательно, они не являются смежными. Несмежные углы, образованные при пересечении двух прямых, – вертикальные и равны между собой. Каждый из данных вертикальных углов равен половине их суммы: 126°:2=63° Смежные с ними углы - тоже неразвернутые и по отношению друг к другу - вертикальные. Каждый из них равен 180°-63°=117°
Вариант решения. Сумма углов, образованных пересечением двух прямых, равна 360° Если сумма двух из них 126°, сумма двух других 360°-126°=234° Поскольку углы попарно равны, величина меньших –126°:2=63°, больших –117°.
Отрезки средней линии трапеции являются средними линиями треугольников АВС и АСD, так как эти отрезки проходят через середину боковой стороны параллельно основанию. По свойствам средней линии имеем: ВС=2*2=4 см, а АD=2*5=10 см. Трапеция равнобедренная, значит высота ВН, проведенная у большему основанию, делит его на два отрезка, большй из которых равен полусумме оснований, а меньший - их полуразности. Значит АН=(10-4):2=3 см. В прямоугольном треугольнике АВН катет АН равен половине гипотенузы АВ, следовательно, угол, против которого лежит этот катет (<ABH), равен 30° (свойство). В прямоугольном треугольнике сумма острых углов равна 90°, значит <A=90°-30°=60°. Углы трапеции, прилежащие к боковой стороне, в сумме равны 180°. Значит угол В=180°-60°=120°. Так как трапеция равнобедренная, углы при основаниях равны. ответ: <A=<D=60°, <B=<C=120°.
Диагональ делит трапецию на два треугольника с основаниями ВС и АД, длина которых вдвое больше средней линии каждого треугольника. Тогда ВС=4 см, АД=10 см. Проведем СР||АВ Противоположные стороны четырехугольника АВСР параллельны. АВСР - параллелограмм, ВС=АР=4 см, и СР=АВ=6 см РД=АД-АР=10-4=6 см Все стороны треугольника РСД равны. Треугольник РСД - равносторонний. Все углы равностороннего треугольника равны 60°. ∠ ВСР=∠ВАР=60° ∠ВСД=СВА=60°+60°=120° Углы при каждом из оснований равнобедренной трапеции равны. Острые углы данной трапеции равны 60°, тупые - 120°.
Градусная величина развернутого угла 180°
Если пересекаются две прямые, они образуют две пары неразвернутых углов. У каждой пары одна сторона общая, а две другие являются продолжением одна другой и вместе составляют развернутый угол. Такие углы называются смежными, их сумма равна 180°.
Сумма данных углов равна 126°, следовательно, они не являются смежными. Несмежные углы, образованные при пересечении двух прямых, – вертикальные и равны между собой.
Каждый из данных вертикальных углов равен половине их суммы: 126°:2=63°
Смежные с ними углы - тоже неразвернутые и по отношению друг к другу - вертикальные.
Каждый из них равен 180°-63°=117°
Вариант решения.
Сумма углов, образованных пересечением двух прямых, равна 360°
Если сумма двух из них 126°, сумма двух других 360°-126°=234°
Поскольку углы попарно равны, величина
меньших –126°:2=63°,
больших –117°.