Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
№1. Дано: прямые АВ, CD, КМ. АВ пересекает КМ в точке О, CD пересекает КМ в точке Е. Угол КОА равен 30 градусам, угол ОЕD равен 120 градусам. Докажите, что АВ параллельна CD. Доказательство: угол ВОЕ равен углу КОА как вертикальный, равен 30 градусам. Угол ВОЕ + угол ОЕD = 30+120 равно 180, они односторонние, поэтому АВ параллельно CD.
№2. Дано: Прямые АВ, СD, КМ. АВ пересекает КМ в точке О, CD пересекает КМ в точке Е. Угол ОЕD равен 120 градусов, угол КОВ равен 120 градусов. Докажите, что АВ параллельна CD. Доказательство: Угол КОВ равен угол АОЕ как вертикальный. Угол АОЕ равен 120 градусов, угол ОЕD равен 120 градусов. Они накрест лежащие при пересечении двух прямых секущей, они равны, значит, АВ параллельна CD.
№3. Дано: Прямые АВ, СD, КМ. АВ пересекает КМ в точке О, CD пересекает КМ в точке Е. Угол КОВ=120 градусов, угол МЕD равен 60 градусов. Докажите, что АВ параллельна CD. Доказательство: Угол ОЕD = 180 - DEM = 180 - 60 = 120 градусов. Углы КОВ и ОЕD по 120 градусов и они соответственные, значит, АВ параллельна CD.
AC = AC1+C1C = 3X
BC/B1C1 = AC/AC1
BC/5 = 3X/X
BC = 5*3X/X = 15 CM