№1. А)Не подходит, т.к. 180-(65+55)=60 Б)Не подходит, т.к. 180-(44+90)=46 В)Не подходит, т.к. 180-(80+30)=70 Г)Да, подходит, т.к. 180-80=100; 180-(100+40)=40. Следовательно треугольник равнобедренный. №2. 180:(5+4+3)=15 15*5=75 ответ: больший угол треугольника равен 75 градусов. №3 Треугольник ВМС-равнобедренный, т.к. ВМ=МС. Треугольник ВМА тоже равнобедренный, т.к. ВМ=АМ. Рассмотрим треугольник ВМА: Угол ВМА=180-28-28=124 (так как угля при основании равны 28 в данном случае). Углы ВМА и ВМС-смежные, значит ВМС=180-124=56. Следовательно, (180-56)/2=62. ответ: СВМ=62 №4. Расстояние от точки к до прямой АВ назовём КМ. Рассмотрим треугольник АКМ: Угол АМК=90. Т.к. катет КМ=9/18=1/2 АК, то угол КАМ=30. Так ка АК -биссектриса, то угол САК=углуКАМ=30. Рассмотрим треугольник АКС: 1)угол АСК=90 2) угол САК=30 Значит угол АКС=180-90-30=60. Углы АКВ и АКС -смежные, значит угол АКВ=180-угол АКС=180-60=120. ответ: 120.
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.