Точка н лежит на стороне ав параллелограмма авсd так, что сн - биссектриса угла всd. прямая нм параллельна ad и пересекает сторону сd в точке р. найдите величину угла между прямыми рв и сн
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
Объяснение:
1. Сумма углов выпуклого многоугольника равна 180°*(n-1), где n -
количество углов выпуклого многоугольника.
S=180°*(7-2)=180°*5=900°.
2. S=6*7=42 (cм²).
3. S=180°*(13-2)=180°*11=1980°.
4. 15*7=105 (cм²).
5. S=ah/2 h=2S/a=2*45/18=90/18=5 (cм).
6. (1/2) основания = √(15²-9²)=√(225-81)=√144=12 (см).
S=12*9=108 (cм²).
7. Пусть меньшая диагональ - х. ⇒
Большая диагональ - х+8.
24+8=32 (см). ⇒
S=(24*32)/2=12*32=384 (cм²).
8. S=10*9,5=95 (дм²) s=0,5²=0,25 (дм²) ⇒
N=95/0,25=380 (квадратов).