М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Аня341
Аня341
14.09.2021 13:43 •  Геометрия

Даны две точки a(2; -7) b(-2; 7) а) найдите координаты вектора ab б) найдите длину вектора ab

👇
Ответ:
69Maxsim96
69Maxsim96
14.09.2021

A(2;-7);\ \ \ B(-2;7)\\\\\overrightarrow{AB}=(x_B-x_A;y_B-y_A)=\\\\~~~~~=\big(-2-2;7-(-7)\big)=(-4;14)\\\\\boxed{\boldsymbol{\overrightarrow{AB}\big(-4;14\big)}}

\big|\overrightarrow{AB}\big|=\sqrt{\big x^2_{\vec{AB}}+\big y^2_{\vec{AB}}}=\sqrt{\big(-4\big)^2+\big{14}^2}=\\\\~~~~~~~=\sqrt{212}=2\sqrt{53}\\\\\boxed{\boldsymbol{\big|\overrightarrow{AB}\big|=2\sqrt{53}}}

4,5(73 оценок)
Открыть все ответы
Ответ:
alina20067
alina20067
14.09.2021

В трапеции ABCD биссектриса угла BAD проходит через точку М, которая является серединой CD. Известно, что АВ=5, АМ=4.  Найдите длину отрезка ВМ.

По условию СМ=CD. 

Решить задачу можно разными

Проведем МК || AD - по т. Фалеса она делит АВ в отношении DM:MC т.е. на АК=КВ. 

В ∆ АКМ ∠КМА= ∠МАD - как накрестлежащие. 

∠МАD=∠МАК- как половины ∠КАD

∠КАМ=∠КМА⇒

∆ АКМ -  равнобедренный, и АК=КМ. 

Но КМ=АК=КВ ⇒ ∆ ВКМ равнобедренный, ⇒ ∠КВМ=∠КМВ. 

Углу КМВ равен накрестлежащий ∠ СВМ. ⇒ ВМ - биссектриса угла СВК. 

В трапеции сумма углов, прилежащих к одной боковой стороне, равна 180º

Тогда сумма их половин равна 90º, и угол ВМА=180º-90º=90º

∆ АВМ - прямоугольный. Отношение катета АМ к гипотенузе АВ 3:5⇒ ∆ АВМ - египетский, и ВМ=3 (ед. длины) ( по т.Пифагора получим ту же величину). 

Доказав, что ∆ АКМ - равнобедренный, проведем в нем высоту КН. Она же - медиана, и АН=НМ. 

Тогда КН - средняя линия ∆ АВМ, и КН || ВМ, откуда следует, что угол ВМА=90º, ∆ АВМ - египетский и ВМ=3  (ед. длины). 

на любителей т. косинусов)

По т. косинусов можно из ∆ КАМ найти косинус угла КАМ, затем по ней  той же теореме длину ВМ.

 Вычисления приводить не буду - пользовалась при нахождении косинуса инженерным калькулятором. Без него значения будут лишь приближенными. Таким образом найден 

 cos ∠КАМ=0,8.

Тогда ВМ²=5²+4²-2•5•4•0,8 ⇒

BM²=25+16-32=9

BM=3 (ед. длины)


Втрапеции abcd ,биссектриса угла bad проходит через точку м которая является серединой cd. известно,
4,6(62 оценок)
Ответ:
Мур3иk
Мур3иk
14.09.2021
1. Задача 1. решена пользователем
ХироХамаки Новичок
(решение в файле)

2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.

Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
             ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО:  ВО = ВН · sin 60° = 4 · √3/2 = 2√3

3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.

Много сделайте хоть что нибудь, желательно с чертежом 1) отрезок кс – перпендикуляр к плоскости треу
4,8(1 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ