Назовем трапецию АВСD. АВ=17 см, ВС=16 см, СD=25 см, AD=44 см
Площадь трапеции равна произведению её высоты на полусумму оснований. Основания даны, высоту надо найти.
Один из решения:
Проведем СМ параллельно ВА. СМ=17 см (или ВК параллельно СD. Тогда ВК=25).
Получим треугольник, в котором известны три стороны: 17, 25 и 28 см.
По ф. Герона площадь этого треугольника равна 210 см².
Высота СН является и высотой трапеции.
S(∆ MCD)=CH•MD:2⇒
CH=2•S:MD=420:28=15 см
S(ABCD)=CH•(BC+AD):2=15•30=450 см²
2. По т. Пифагора АВ^2=AO^2+OB^2, т. е. АВ^2=25+144=169, АВ=13.
3. Площадь прям. треуг-ка АВО=АО*ОВ/2=AB*OH/2, где ОН=высота=расстояние от точки пересечения диагонали до стороны ромба.
12*5/2=13*ОВ/2
OB=60/13=4 целых 8/13